Atomic Theory

The original idea that everything was made up of tiny particles came from the Greek philosopher Leucippus of Miletus.

Leucippus' theory was about the 5th Century B.C. and was called atoms. He was famous for his atomic theories and his list of 21 different elements. He wrote a book about how the different elements were made up of atoms, and had a way to create symbols for the different elements.

John Dalton was an English scientist. He was famous for his atomic theory and his research in color blindness. He revised the theory about atoms and died later. He had 4 basic ideas about atoms:

1. Atoms are small, they can't be divided.
2. All matter was made up of atoms.
3. An atom has a certain number of parts.
4. The word "atom" comes from the Greek word meaning "uncuttable." 

Dalton was also the first person to create tables for the different elements and he had a list of weights for 21 different elements.

In 1808 he revised that atoms have a positive charge. He thought that the number of electrons in an atom is equal to the number of protons.

J J Thomson was a British physicist. He studied cathode rays and how much energy they carried. In an experiment, he wanted to see how much of the electrons that cathode rays emitted were affected by a magnetic field and how much energy they had. Thomson's conclusion was that cathode rays contained positive particles and that cathode rays were made up of particles that he called "corpuscles," meaning that atoms can be divided. This conclusion led to the development of the atomic model.

Erwin Schrödinger was an Austrian physicist who did research on nuclear magnetic resonance, which led to the development of the wavefunction.

Ernest Rutherford was an English chemist. He won the Nobel Prize for the study of radiations he discovered, the proton, which is a subatomic particle. He won the prize in 1908 and is now known as the father of nuclear physics.

In 1919, he discovered that electrons and protons have a charge. The number of electrons in an atom is equal to the number of protons.

In 1908, he discovered that the nucleus of the atom is positively charged. He thought that the number of protons in the nucleus is equal to the number of electrons.

J. J. Thomson's experiment in 1897 showed that the atom has a positive and negative charge.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the properties of the atom. The number of electrons in different elements would be placed in the periodic table. His work is known as the Bohr model or planetary model.

In 1911, he discovered that the nucleus of the atom is positively charged. He thought that the number of protons in the nucleus is equal to the number of electrons.

Ernest Rutherford worked with radioactivity elements, which led to his theory on radioactivity.

In the same year, he worked with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.

In 1913, his work with a new type of electron microscope determined the number of electrons in different elements and this led to the discovery of the electron microscope. He went on to discover the neutron in 1932.